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ABSTRACT: Using the simple setting of 3D N = 1 supergravity, we show how the tensor
calculus of supergravity can be extended to manifolds with boundary. We present an exten-
sion of the standard F-density formula which yields supersymmetric bulk-plus-boundary
actions. To construct additional separately supersymmetric boundary actions, we decom-
pose bulk supergravity and bulk matter multiplets into co-dimension one submultiplets.
As an illustration we obtain the supersymmetric extension of the York-Gibbons-Hawking
extrinsic curvature boundary term. We emphasize that our construction does not require
any boundary conditions on off-shell fields. This gives a significant improvement over the
existing orbifold supergravity tensor calculus.

KEYWORDS: Ppace-Time Symmetries, Supergravity Modeld.

*Dedicated to Julius Wess (1934-2007).


mailto:dmitry.belyaev@desy.de
mailto:vannieu@max2.physics.sunysb.edu
http://jhep.sissa.it/stdsearch

Contents

. Introduction

=

=~

2. Co-dimension one gauge algebra
P 3D N =1 gauge algebra

P-J Einstein boundary condition

-3 The unbroken half of bulk SUSY
P-4 Modified ey susy

B The reduced gauge algebra

B Co-dimension one submultiplets

3D supergravity multiplet

Co-dimension one split

Induced supergravity multiplet

Radion multiplet

Extrinsic curvature multiplet
Submultiplets of the 3D scalar multiplet

EEEHDREEE

Separately susy boundary actions

d. Susy bulk-plus-boundary actions
BE1 The “F + A” formula
B3 Extended F-density
Super-York-Gibbons-Hawking construction

EEEE

B. Summary and conclusions

1. Introduction

Supersymmetry (susy) and supergravity (sugra) were first formulated in the 1970’s as field
theories in z-space (the x-space or component approach). A tensor calculus for 4D N =1
rigid susy, with Poincaré or conformal symmetries, was developed by Julius Wess and
Bruno Zumino in their pioneering work []. For local susy (sugra), a tensor calculus for 4D
N =1 models was obtained in [f, f]. At the same time, the superspace approach of Salam
and Strathdee [[I] was extended to supergravity by Wess and Zumino [[f] and was shown
to be equivalent to the z-space tensor calculus approach [[f]. Both approaches have been
used since, and each has its own virtues.

In all these studies, boundary effects were mostly ignored and various total derivatives
were simply dropped. Already in the x-space approach, one calls a Lagrangian super-

symmetric if its susy variation is a total derivative. In superspace, manipulations with



susy-covariant derivatives D, often produce total x-space derivatives which are again dis-
carded under the x-space integration. One cannot do so in the presence of boundaries in
x-space, which is why the superspace and tensor calculus approaches are not obviously
extendable to a manifold with boundary.

Susy models in the presence of z-space boundaries have been studied before. Boundary
terms for open fermionic strings [ff] and the Casimir effect in 4D susy theories [§] were among
the first considered. (For a flavor of other models discussed over the years, see [{].) Already
in [fJ] it was argued that one needs boundary conditions (BC) to maintain (at least part
of) susy in the presence of a boundary, and that the BC must, in turn, be left invariant
under susy transformations (that is, form a “susy orbit” [[[(]). This approach, which we
will call “susy with BC,” was used in most works on susy in the presence of boundaries.

In a recent analysis of [I{, [[]], the BC required by the Euler-Lagrange variational
principle, were considered together with the BC needed to maintain susy of the actions.
The orbit of all BC was constructed, and the functional space of off-shell fields was defined
by the set of all constraints. Here we take a completely opposite point of view: we develop
an approach to rigid and local susy in which off-shell fields are totally unconstrained.

Our approach gives classical' bulk-plus-boundary actions that are susy (under a half
of bulk susy) without using any BC on fields. We call our approach “susy without BC” to
contrast it with the “susy with BC” approach used so far.? For rigid susy, the validity of this
approach has already been established by one of us in [[J]. The key ingredient used there,
which made the construction particularly simple, was the co-dimension one decomposition
of (rigid) superfields [[4]. In this article, we will give a first complete realization of this
approach in the case of local susy (sugra). We restrict our discussion to a 3D space-time
and show how the complete tensor calculus for 3D N = 1 local susy can be extended to
take boundaries into account. Co-dimension one decomposition of the bulk susy multiplets
will play an essential role in our construction. An extention of our construction to higher
dimensions and its superspace realization will be discussed elsewhere [1J].

Understanding supergravity on a manifold with boundary is an interesting mathemat-
ical problem. It is also important for various physical models that have appeared in the
past decade. Notably, the 11D Horava-Witten (HW) construction [I5] and the 5D Randall-
Sundrum (RS) scenario [[[§ (whose minimal supersymmetrization was achieved in [[7)).3
In these models, one starts from a (standard) bulk supergravity action and tries to con-
struct a boundary action (involving, in general, additional boundary-localized fields) that
makes the whole system supersymmetric (under a half of bulk susy, with the other half be-
ing spontaneously broken by the presence of the boundary). As of now, most approaches to

1At the quantum level, local susy is replaced by BRST symmetry, but the same approach can be
followed [E, ﬂ]

2We will impose BC on symmetry parameters, but not on fields. Of course, BC on fields follow upon
applying the variational principle to our actions, but these BC are not needed in the proof of susy of the
actions. Whether these BC form susy orbits [E, El] is a separate issue that we will discuss elsewhere [@]

3The HW and (susy) RS models are usually discussed in the “upstairs picture” (on the S*/Zs orbifold).
The alternative “downstairs picture” (on a manifold with boundary) approach to these models was consid-
ered, for example, in [@] and [@], respectively. Here we adhere to the “downstairs picture” description.



constructing such susy bulk-plus-boundary actions have relied on certain approximations.
For example,

1. the 11D HW action is susy only to a certain order in the expansion parameter K2/3 [@,

EJE

2. the 5D orbifold supergravity tensor calculus of [R0, 1] relies on using standard orb-
ifold “odd=0" BC which, in general, are incompatible with the BC one derives from
the variational principle [RJ];

3. the 5D constructions of [RJ], which incorporate BC following from the variational
principle, are worked out only to lowest fermi order.

We hope that our approach, which works without any approximations or assumptions, will
help to bring these constructions to completion.

We base our construction on the existing tensor calculus for 3D N =1 and 2D N =
(1,0) supergravity. This tensor calculus was worked out by Uematsu [P4], 5], following the
4D N = 1 results of [fJ]. In these derivations, conformal sugra plays a fundamental role,
but we consider only Poincaré sugra in this article.

Our construction will consist of the following steps.

First, we analyze the algebra of supergravity gauge transformations. We recall why,
in the presence of a boundary, one can (typically) preserve only half of bulk susy, and
prove that the restriction to this half of susy reduces the whole 3D N = 1 gauge algebra
to the standard 2D N = (1,0) gauge algebra, without imposing any BC on fields. We
note that the analysis becomes particularly simple in a special Lorentz gauge (which is
opposite to the standard Kaluza-Klein choice) and we adopt that gauge from then on. As
a consequence, the preserved half of susy transformations gets modified by a compensating
Lorentz transformation.

Second, we perform a co-dimension one decomposition of the 3D supergravity tensor
calculus. This gives, in particular, the induced supergravity multiplet that is necessary for
constructing separately susy boundary actions. The decomposition does not rely on using
any BC (like “odd=0" BC used in [R0, R1]) and is applicable to any hypersurface parallel
to the boundary.

Third, we show that on a manifold with boundary, the standard 3D F-density formula
must be extended by the addition of a boundary A-term. The extended F-density formula
automatically gives bulk-plus-boundary actions that are susy (under the half of bulk susy)
without using any BC on fields. We also write the extended F-density in terms of the
co-dimension one submultiplets.

To illustrate the construction, we finally apply the extended F-density formula to
the 3D N = 1 scalar curvature multiplet. This will show that the minimal susy bulk-
plus-boundary action, with the standard 3D N = 1 supergravity in the bulk, does not
include the York-Gibbons-Hawking term [2f]. The latter comes as a part of a separately
susy boundary action that one needs to add in order to relax field equations which would
otherwise be too strong.



2. Co-dimension one gauge algebra

In this section, we will show how the 3D N = 1 supergravity gauge algebra* reduces
naturally to the 2D N = (1,0) supergravity gauge algebra on the boundary, as well as on
co-dimension one slices parallel to the boundary.

2.1 3D N =1 gauge algebra

The gauge transformations of the 3D N = 1 (off-shell) Poincaré supergravity are the
Einstein (general coordinate) transformation §g(£M), the local Lorentz transformation
61,(AB) and the susy transformation dg(€). The complete gauge algebra reads®

[6(&") +oL(MP) + dg(er), dp(€2) +L(\'P) + dg(e2)]

= 5E(£é\gmp) + 5L()\é)§’lp) + 5Q(€Comp) (21)

where the composite parameters are
Ep = 2@ Me) + [ onel — (1 - 2)]

Mo = 2@V e)on? + (€7 Pe1)5 + [gv INAE + MNP - (1 - 2)

comp
1
€comp = — (v e1)vnr + [iévajvq + Z)\éB’YABﬁl - (1<2) (2.2)

with v = ~v4e4M. The composite parameters depend explicitly on the fields of the 3D
supergravity multiplet (ex4, s, S), with e4™ being the inverse of eps and @y 4p being
the supercovariant spin connection (see (B.4)). The algebra is realized on the supergravity
multiplet itself, as well as on other 3D multiplets such as the 3D scalar multiplet ®3(A) =
(A, x, F).

2.2 Einstein boundary condition

We are interested in constructing supersymmetric bulk-plus-boundary actions of the form

S = / Bzl + d?zLy (2.3)
M oM

For notational simplicity,® we choose the coordinates ™ in such a way that the boundary

OM is at 2> = 0 and that 22 > 0 in the bulk M. The boundary has coordinates 2™ =

4The gauge algebra of 4D N = 1 sugra was first discussed in [ﬁ], and its closure if auxiliary fields are
included was discussed in [E, E]

50ur conventions are: M, N are curved 3D indices, A, B are flat 3D indices, with decomposition
M = (m,3) and A = (a,3). The 3D gamma matrices satisfy v = v + n48 with n*® = (= + +) and
’yAfnyyC = 4A4BC 4 nAnyC + nBC’yA — nAc’yB with fyABC = ¢4B% Our spinors are Majorana; ¢ = " C,
ct = —c, C’VAC“1 = —(fyA)T. Einstein transformations yield 556MA = fNaNeMA + eNAaMfN, etc.;
Lorentz and susy transformations are given in (E), (@) and ()

5Qur choice of coordinates z does not impose an Einstein gauge as it does not restrict £M (z). It also
does not imply that our boundary has to be flat, because it places no restrictions on (intrinsic or extrinsic)
curvature.



(2%, z1). Under Einstein transformations, £3 is assumed to be a density, 0¢L3 = o (EML3),

so that
0cS = | dPa( - €Ly + 0cLs) (2.4)
oM

The standard way to achieve ¢S = 0 is to impose a BC on the Einstein parameter,

3 OM

§ (2.5)

and take L to be a density under the induced Einstein transformations, d¢Lo = 0 (£ L2).
(We assume that the total 9, derivative integrates to zero on the boundary.) In principle,
one could investigate other ways to achieve §¢S = 0 without imposing the BC (R.j). In
this article, however, we will assume that this BC on the parameter ¢ has to be imposed.

2.3 The unbroken half of bulk SUSY
Consistency of the gauge algebra (R.1)) with the BC (B.5) requires [[[]

oM _ oM
g’omp =0 g (62/7A61)6A3 =0 (26)

It is convenient to choose a special Lorentz gauge,’

=0 = e,°=0 (2.7)

both on OM and in M. (We shall later comment on the case when one does not impose this
gauge.) As 633 is non-zero, the BC (P-) now reduces to a field-independent requirement

ava 2o (2.8)

Introducing projectors Py = %(1:&7‘6’) and defining e+ = Pye, we solve this BC by imposing
(without loss of generality) the following BC on the susy parameter e,

.My o M €4 (2.9)

The half of susy that is not broken by the boundary satisfies
_ - = 3, _ - _ - 3
e+ =Prey, =P, yep=ep, &G =€y (2.10)

The other half, parametrized by e_, is broken by the boundary. It could, in principle, be
restored by introducing appropriate Goldstone fields on the boundary, which would show
that the breaking is spontaneous. However, in this article, we will only be interested in
preserving the e susy.

"Note that the gauge e,> = em3 = 0 is opposite to the standard Kaluza-Klein choice [@], e3" =e3* =0.
It is the analog of the “time gauge” introduced by Schwinger [E] for the Hamiltonian analysis of gravity.
(For the Hamiltonian analysis of the Dirac action in a curved space it was used by Kibble [@], and for
the Hamiltonian formulation of 4D N = 1 supergravity it was used in[g]). In more mathematical terms,
this gauge corresponds to the choice of a surface-compatible frame [BY]. Its usefulness in the setting of

supergravity on a manifold with boundary was emphasized in |



2.4 Modified €, susy

The gauge condition (R.7) is invariant under arbitrary &™ and A® transformations, but
not under A% and e, ones. Only a particular combination of A% and e, transformations
survives in this gauge. We, therefore, introduce a modified ¢4 susy transformation,

0g(et) = dgle+) +0r(N 3 = —€+ta—) (2.11)

which satisfies 5’Q(e+)em3 = 0. (We will use the notation §; = dg(e+).) It is this e susy
transformation that we will use in the following constructions.

2.5 The reduced gauge algebra

We claim that the surviving gauge transformations, 6z (&™), dz(\%), and dg(e+), form a
subalgebra of the 3D N = 1 supergravity gauge algebra that is isomorphic to the (standard)
2D N = (1,0) supergravity gauge algebra. The non-trivial part of the proof concerns the
commutator of two (modified) e, susy transformations. We find

(6 (e14), 6 (ea )] = 0m(EM) + 0L (A*P) + 5g(e) + 01(A3) (212)

where®
m — a m 3 1 n 1 n
" = 2(@7 14 )ed, §7=0, e= —55 Un + 55 Un—
o[~ 1— o[~ 1

Aab = & |Wnab — §¢a_’}’n1/}b—]a Ay =§ [wnag + §Sem] (2.13)

The extra composite Lorentz transformation with
X3 = —€24 00 (€11 )Wae — (1 2) (2.14)

arises because the compensating Lorentz transformation in (R.11) is field-dependent. We
see immediately that the (composite) e_ vanishes identically (without imposing ¥,,— = 0),
thanks to the contribution from the compensating Lorentz transformation. Using the
results of the next section, one finds that [[[J]

~ 1 — . 1— .
Az T A3 = §€n7/)n+¢a—, Wnab — 5%_%%— =0l (2.15)

where (T):Lrab is the standard supercovariant connection constructed out of e;,* and .
This brings (R.12) to the form

Fters), Saleas)] = Om(E™) +6r(hy = €'0) + Soler = —3€%ns)  (216)

which is the standard form of the 2D N = (1,0) (local) susy algebra. We emphasize that we

have identified this subalgebra without imposing any boundary conditions on supergravity

3

fields. Accordingly, this identification works for any hypersurface x° = const parallel to

the boundary oM.

8The extra terms in A, and ¢ arise from the terms ()\'z)ag()\'l)gb and %)\lgaé’ya361+ in @) upon using
the Fierz identities (€1¢-)(¢_n4) = —3(€+7°n+)(¢_7ep—) and (€49-)p- = —(€4¢- ).



3. Co-dimension one submultiplets

Having proved that the 3D N = 1 supergravity gauge algebra reduces to the 2D N = (1,0)
supergravity gauge algebra on the hypersurfaces parallel to the boundary, we are guaranteed
that the 3D multiplets can be decomposed into a set of 2D submultiplets. In this section,
we will describe these submultiplets for the 3D supergravity and the 3D scalar multiplets.

3.1 3D supergravity multiplet

The 3D supergravity multiplet, (eps?, s, S), enjoys the following susy transformations,
~ 1 ~
Seenr = ey Mons,  Scbar = 2Dpre, .S = §E7MN7;Z)MN (3.1)
where QZM N = ﬁMl/JN — ﬁNl/JM is the supercovariant gravitino field strength and

- o _ ~ 1
Dyre = Dy (@)e + Z'VMES, Dypy = Dy (D) — Z'YN¢MS (3.2)

The covariant derivatives Dj; are only Lorentz covariant, so that

~ 1.
Dy (@)Yn = Oudn + ZWMAB’YABwN (3.3)

and the supercovariant spin connection is given by

OnmaB = w(€)MAB + KMAB,

1 _ _
KMAB = Z(wM’YAl/JB — Yy yBYA + Y avMYB)

1
w(e)pap = §(CMAB — Cya— Capm),
CMNA = aMeNA — 8N€MA (3.4)

where we use the standard conversion of indices, ¥4 = ea™ys, etc. The supercovariant
spin connection has the following susy transformation,

- 1., - ~ ~ 1,
SenAB = 56(731/1MA — YAYMB — YMVAB) — §(€’YAB¢M)5 (3.5)

Under a 3D Lorentz transformation, we have

1 — —
Sxent = MPBeyp, by = Zx\ABVAmﬁM, WS =0, 6\wymap=—-D@)mIap (3.6)

These Lorentz transformations will play a role as the (modified) e, susy transforma-
tion (B.11)) involves a compensating Lorentz transformation.
3.2 Co-dimension one split

To identify co-dimension one submultiplets of the supergravity multiplet, we first split the
indices, M = (m,3), A = (a,3), and the spinors, € = e, + e_. The resulting component



fields (and parameters) can be formally assigned parities (in a way consistent with the susy
transformations) as follows,
even: e“ 633A Wmab  W343 Umt+  Y3— €4 Om
odd: e3 €, =0 wwp w2 S Uy Y34 €. =0 05

ma3

(3.7)

(The vanishing of em3 and e_ correspond to our Lorentz gauge choice (R.7) and the restric-
tion (R.9) on susy, respectively.) Co-dimension one multiplets will have definite parities as
well.

In general, the induced metric on the x3 = const slices iS gmn = €m®ena + em?’eng.
With our choice of the Lorentz gauge, however, we have gy, = €n%nq, SO that e, is the
induced vielbein. One can also easily check that w(e),,qp coincides with the torsion-free
spin connection constructed out of e,,%, whereas w(e)m L36n® coincides, up to a convention-
dependent sign, with the extrinsic curvature tensor [[J). We fix the sign by defining”

Ky = w(e),, 56n" (3.8)

In our gauge, e,,°> = e, = 0, we have e,;,%," = 0", e, em? = 5,° and 633633 =1, as well

as
Ym = €m Ya, V3 =€3"Va+ 633737 7" =" + ’7363m7 v = ’73633
Vo = €U, 3 = €3 + e3°13 (3.9)

We will also use K, = w(e),, 3 and Ky, = €, Kpnq. Noting that &, s is not supercovari-
ant under the (modified) e; susy, we define the supercovariant extrinsic curvature tensor
as

1—

I?ma = @mag - §¢m+¢a— (310)

USing Emwa = Em-}-wa— + Em—wa—i- and Em’}’gl/}a - _Em-ﬂpa— + Em—waﬂ-? we find that
N 1 _ _ _
Ko = Kpna + Z(q/}m’}’awg — Ym¥a + wa’me?;) (3.11)

As the bosonic extrinsic curvature tensor is symmetric, K,, = Kj,, the supercovariant
extrinsic curvature tensor is symmetric as well, K, = Kp,.

3.3 Induced supergravity multiplet
Under the (modified) e susy (R.11]), the induced vielbein transforms as follows,

Slem® = €Ly my (3.12)

9The extrinsic curvature is usually defined by Kyn = +Pu S PnEVknr where P ™ = 6% — nun®

and Vgny = Oxnr — FKLSns. In our gauge and with our choice of coordinates, nys = (0,0, —egé) and

Kpmn = Flmn’ns = £n’es®. The vielbein postulate yields Imn’es® = —wma’en®. (See appendices

in [@] and [@] for more details and references.) Our sign choice is then Kyny = — Py Pn"Vignr.



(The compensating Lorentz transformation does not contribute here as X“?’emg vanishes
in our gauge.) The variation of ¥, gives

1. 1 3
621/}7714- = 2(87” + Zwmab’}’ab)e—i— + 5)\;3’Ya3¢m_ (313)
where )\; 5= —€41,—. Performing the following decomposition,
~ ~ _ _ 1 — — —
Wmab :w:);ab + Kb Kimab = Z(¢m—7a¢b— - wm—7b¢a— + wa—7m¢b—)
~ 1 — — _
w:,'wb =w(€)mab + /f:,—mba ’f:,_wb = Z(T/)m+7a¢b+ — Vs WoWar + 7/)a+7m¢b+) (3.14)

we observe that @ , is the (standard) supercovariant spin connection for the 2D (induced)
vielbein e,,*. Defining the 2D (Lorentz) covariant derivative as

1
D! (GF)e = Ope + Z@;ab’y“be (3.15)

we arrive at

~ I _
St = 2D, (@ ey + 5%m

We claim that the last two terms cancel each other. To prove this, we first observe that

1 ~
Vet S XV (3.16)

the antisymmetrization in any three 2D vector indices gives zero, [abc] = 0, which yields
_ 1—
Fmab = §¢a—7m¢b— (317)

Second, the identity v = e“b?”yg accounts for a useful trick,

’Yabe-i- (Ea—’}’mwb—) = ¢+ (Ea—’Ym’Yabwb—) (3'18)

Finally, gamma-matrix algebra reduces the last term to 2¢, (1, Y*m_) and the Fierz
transformation gives

VPt (Pamvmtp-) = 27" (E1ta) (3.19)
which proves our statement and gives us the final result,
cem® = €1y Dmrs  Oetbmy = 2D;, (G7 ey (3.20)
This shows that (e,,%, ¥y ) is the (standard) 2D N = (1,0) supergravity multiplet.

3.4 Radion multiplet

In order to identify further submultiplets, we recall the basics of the 2d N = (1,0) su-
pergravity tensor calculus [RH]. Besides the supergravity multiplet we have just identified,
there are two other basic multiplets, the scalar multiplet ®2(A) = (A,(_) and the spinor
multiplet Uo((y) = (¢4, F). They transform by definition as follows,

o A=2(, 0l¢- ="+ DA
0.Cy =Fey, OLF =€y D¢y (3.21)



where D) A = 9,A — 2, x— and D¢y = DL(GH) ¢y — $Fy,4 are supercovariant deriva-
tives.

With these definitions, we now claim that

Pa(es’) = (es®, —es’uy ) (3.22)

is a good 2D N = (1,0) scalar multiplet which we will call the radion multiplet.'® First
of all, we observe that e3® is indeed a scalar under the €™ and A* transformations. The
non-trivial part in this statement is that in

Sees® = E"Opes” + e,° 058" (3.23)
the last term vanishes in our gauge. Next, we apply the (modified) e susy to 633 and find
52633 = E+’73¢3 + )\/3[163& = E+(—T[J3_ + egaﬂla_) = E+(—€331[)3_) (3.24)

which identifies the superpartner of 633 as (_ = —633¢3_. To check that the variation of
¢ has the correct form is a bit more involved. The details will be presented in [[]. The
key intermediate statement is

~ 1—
Sy = P- [€3M5¢M + ¢M563M} =7"es [wgag — 3¥34Ya- (3.25)
Next, in our gauge, it is easy to prove that
~ 1 — —
D305 = —€3°Ontgs + 5 (D3, Yo — U3 ) (3.26)

Finally, the contribution 1[)3_5633 vanishes thanks to the identity (€;¢_)1_ = 0. Collecting
the pieces, we find that 6(_ has the required form, which proves that (B.29) is a good 2D
N = (1,0) scalar multiplet.

3.5 Extrinsic curvature multiplet

So far, we have found two even submultiplets, the induced supergravity and the radion
multiplets. Now we will present an important odd submultiplet, the extrinsic curvature
(scalar) multiplet. The starting point is the (modified) e susy transformation of ,,_,

N 5 1 1 5
St = ©,057" €4 + §7m€+5 + §>\;37a3¢m+ (3.27)
Observing that 6le,™ = —(€47"%ay )ep™, we find, after some Fierzing,
/ b 7o 1
5e¢a— =7€q [ Kap + §nabs (328)

0The term “radion” refers to a field parametrizing the radius of the extra dimension [@] In our case,
proper distances in the 22 direction must be measured with g3z = 633633 + e3%e3q, which is not given by

es° alone. Nonetheless, we will call @(633) the radion multiplet.

— 10 —



where K is the (symmetric) supercovariant extrinsic curvature tensor defined in (3.1().
Contracting this expression with v, we find

SV as) = (K + 8)ey (3.29)

where K = n“bf(ab is the (supercovariant) extrinsic curvature scalar. Noting that y*1,_
behaves as (4, we claim that

To(Y"as) = (V'%ae, K +5) (3.30)

is a good 2D N = (1,0) spinor multiplet. The proof consists in demonstrating that
7> a ~ 1 = - _a
SU(K + ) = e 7" Dy(@ ) [V -] — 5 (B + 5) (€47 Yas) (3.31)

The details of the proof will be presented in [L9], where we will also discuss an extrinsic
curvature tensor multiplet as well as a submultiplet that starts with eg®.

3.6 Submultiplets of the 3D scalar multiplet

In 3D N =1 supergravity, there is only one type of matter multiplet, the scalar multiplet
$3(A) = (A, x, F). (Other multiplets can be constructed by adding extra Lorentz indices.)
The susy transformations of this multiplet are

~ ~ 1
bA=¢x, Ox=7MeDy A+ Fe, 6.F =eyMDyry— ZSEX (3.32)
where Dy A = Oy A — %EMX and EMX =Dy (0)x — %7N¢M13NA — %F¢M are superco-

variant derivatives. Under the (modified) e susy, this 3D multiplet splits into the following
two 2D N = (1,0) submultiplets,'!

. 11—,
CI)Z(A) = (A7 X—)7 \IIQ(X-F) = (X+7 F+ D?;A - §¢a—’}’ X—) (333)
The proof consists in showing that

GLA =% x_, Ox- =" D,A

. 1
ox+ = Faeq, Fy=F + D3A— 5%_7“)(—
~ 1._
S Fy = €4 y* D' (@  ax+ — 5 €7 Yot ) 2 (3.34)

where BQA = e (OmA—3,, x—) and 13314 = e3M (O A— 310 prx). The proof is straight-
forward, except for the 6. Fy part that we will discuss in [[[J].

1YWe note that our co-dimension one multiplets contain terms of the type “odd - odd” that are set to zero
in the approach of [@, @] For example, let us take I’ to be even, so that x4+ is even and x— is odd. The
multiplet W5 (x4 ) is then even and contains an explicit product of odd fields, @(ky“x,. Such a product
is also present in the radion multiplet () via the term e3®1),— inside (- = —633’(/){37. For dimensions
higher than 3D, such products also appear in the induced supergravity multiplet @]
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3.7 Separately susy boundary actions

In the 2D N = (1,0) supergravity tensor calculus [RF], susy actions are constructed from
spinor multiplets WUo((y) = (¢4, F) with the help of the following F-density formula,

Lr [‘1’2(C+)} = e [F + %Ea+7ag+:| (3.35)

where eo = dete,® In our case, this formula can be directly applied to constructing
(separately) susy invariant boundary actions. Indeed, under the (modified) e} susy, we
have

OLp [ W2(C)]| = O [ea(ErrCi)ea”] (3.36)

and the total d,, derivative integrates to zero on the boundary. Therefore,

/8 y d*zey [F + %Eaﬂ“g] (3.37)

is a (separately) susy boundary action for a general spinor multiplet ¥o((y) = ({4, F'). For
example, we can apply this formula to the extrinsic curvature multiplet (B.3(]) to obtain

N 1_
/ d?zes [K + S+ —¢a+’ya’ybwb_] (3.38)
oM 2
which is (separately) supersymmetric under the (modified) e susy (B.I1).

4. Susy bulk-plus-boundary actions

In this section, we will find an extension of the 3D F-density formula that makes it very
easy to construct susy bulk-plus-boundary actions. We will then show how this formula
can be written in terms of co-dimension one submultiplets. Finally, we will use it to
supersymmetrize the York-Gibbons-Hawking construction.

4.1 The “F + A” formula

In the 3D N = 1 supergravity tensor calculus [R4], susy actions are constructed from scalar
multiplets ®3(A) = (A, x, F) using the following F-density formula,

1— 1 —
L[ @a(4)] = ea|F + S0 x + 746NNy + AS| (4.1)
where e3 = det ey, Under 3D susy, this density transforms into a total 3D derivative,
5L [<I>3(A)] — O [eg (zfny n AEfyMNwN)] (4.2)

In the presence of a boundary, the bulk F-density does not give rise to a separately susy
bulk action because the total derivative yields a boundary term,

/ 3z Lr [@3(14)} =— d*zes (Eygx + AE73a¢a> (4.3)
M oM

— 12 —



We used that, in our gauge, e,®> = 0 and 63633 = ey. Noting that Lp [@3(/1)] is a Lorentz
scalar, the (modified) €, susy transformation (R.11)) gives

/M L 05(4)] = /a s (Fox- + 427" ) (4.4)

Noting that 0/A = €;x_ and 0les = ea(€17"q4), We can construct a boundary action
whose variation cancels ([£4). The following bulk-plus-boundary action,

Spa = / Palp[®y(4) [ drea (45)
M oM

is invariant under the (modified) e, susy. We call this the “F + A” formula.'?

4.2 Extended F-density

As we will demonstrate explicitly in [[J], the boundary A-term can also be written as a
bulk contribution thanks to the following relation,

—/ d*zey A :/ d*res(0;A + KA) (4.6)
oM M
This allows us to define an extended F-density

L[®3(A)] = Lp[P3(A)] + e3(034 + K A) (4.7)

whose integral over the bulk M reproduces the bulk-plus-boundary “F + A” formula ([.).
Under the (modified) e susy, this extended 3D F-density behaves like the ordinary 2D
F-density (that is, it varies into a total 9, derivative). Therefore, we expect that it should

be possible to rewrite it as a 2D F-density of some 2D N = (1,0) spinor multiplet,'?
L[ ®@3(A)] = Lr[P2(C4)] (4.8)
This is indeed possible, and we find [
U(Ch) = Dales”) x [Walxs) + Wa(y"am) x Ba(A)] (4.9)

where ®3(A) and Wa(x+) are the submultiplets (B.33) of the 3D scalar multiplet ®3(A),
whereas ®(e3?) and Wy(y%),_) are the radion and the extrinsic curvature multiplets,
respectively. To derive this result, one needs the multiplication formula

(A, ) % (G, F) = (Aly, AF —C_(y) (4.10)
which is part of the 2D N = (1,0) tensor calculus [J].

12 The “F 4+ A” formula (@) has a natural extension to the case when the Lorentz gauge (@) is
not imposed [@] We only have to replace e = det(en®) with the determinant of the induced vielbein
e5 = det(e],®) which satisfies e,,%ene = em®ena + emgeng. The resulting bulk-plus-boundary action is
susy under the half of bulk susy defined by y3e, = \/ﬁ@r. Note that this makes the susy parameter e
field-dependent which makes the analysis of the gauge algebra more subtle [@]

131n the superfield language, this corresponds to giving a prescription for writing 3D locally susy actions in
terms of 2D superfields. For rigid susy, similar constructions are known in various dimensions . For the
linearized 5D supergravity, the description in terms of 4D superfields was given in [@] For the full non-linear
5D supergravity, such a construction would require [@, going beyond the orbifold supergravity tensor
calculus of [E7 @] where odd supergravity submultiplets (like our extrinsic curvature multiplet (B.3d)) and
“odd-odd” terms in even multiplets are discarded.
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4.3 Super-York-Gibbons-Hawking construction

The “F + A” formula (.§) can be applied, in particular, to the 3D scalar curvature mul-
tiplet,

1 1 1 1-wm Y 3
D3(9) = <S, §7MNTZ)MN - §7M¢MS, §R(w) - §¢ AN ban + st bar — ZS2>
(4.11)

We immediately obtain the following bulk-plus-boundary action,

Sse: = / PBaes [13(@) + L5 AMNE D) v + 152} - / PaerS  (412)
M 2 2 4 oM

which is, by construction, invariant under the (modified) e, susy (without using any bound-
ary conditions). However, when one tries to apply the variational principle to this action,
one runs into a problem because the bulk auxiliary field S appears linearly on the bound-
ary. (Its field equation would require es to vanish, which is too strong.) This can be cured
by adding a separately susy boundary action that removes the term linear in S. We add
the action given in (B-3§). The resulting improved bulk-plus-boundary supergravity action
reads'®

impr 1 ~ 1— ~ 1
Sse = / d’es [gR(w) + §¢M7MNKD(W)N¢K + 152]
M

1
+ / d*zes <K + —%ﬂ“’ybwb—> (4.13)
oM 2
where K = emal?ma with I?ma =w

extrinsic curvature tensor. The boundary term, which is obviously a susy generalization of
the York-Gibbons-Hawking term [Rf], can also be written as follows

ol — %Em 4+ %q— which is the (symmetric) supercovariant

/8 y d*zey (I? + %Eaﬂ“bwb_) (4.14)

where K = e™@ Nma with IN(ma = a}maf’) which is neither symmetric nor supercovariant
under the (modified) €, susy. The Euler-Lagrange variation of the improved supergravity
action gives rise to the following boundary term,

/ d’*zes [5ema(kma — emaf?) + 5Em+’y“b1/}b_eam] (4.15)
oM

In our conventions, R(&) = eg™ea™ R(®)mn*P with R(@®) NP = Omon*E + 00 One® — (M -
N), and YN = Dy (D)n — D (D).

5The boundary term of the improved supergravity action () has the same form as the one found by
Moss . (Note that 2@(”7“7[71/1177 = Eafy“fybz/)b.) However, there are essential differences. Moss uses an

" which in our case would mean e,,° = 0 and e3® = 1. Moreover,

“adaptive coordinate system eg; = ONI,
his expression for the supercovariant extrinsic curvature involves ¥n (our t3) and, therefore, could be
equivalent to our (), which involves 13, only if, in addition, e3® = 0. Finally, in the approach of Moss,
susy of the bulk-plus-boundary action is claimed only using the 1¢,,— = 0 boundary condition. Our tensor
calculus approach, on the other hand, leads to bulk-plus-boundary actions that are susy without using any

boundary conditions.
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Therefore, removing the term linear in S in the boundary action of (f.13) by adding a
separately susy boundary action (B.3§) has improved the variational principle it two ways.
First, the unacceptable boundary condition es = 0 is avoided. Second, the boundary
part of the Euler-Lagrange variation (known also as “the boundary field equation”) is now
in the “pdq” form (by analogy with the Hamiltonian formulation). This allows one to
derive “natural” boundary conditions (for on-shell fields) by requiring that the boundary
variation vanishes for arbitrary d¢ Bf]. In our case, the role of “¢” is played by the induced
supergravity multiplet (e,,%, ¢y, ) of (B.20).

It is very important for extending our construction to higher dimensions (where the full
set of auxiliary fields is not always known or does not exist) that it is possible to eliminate
the auxiliary field .S by its equation of motion S = 0 while preserving susy of the action
without the use of any boundary conditions. This indicates, for example, that even though
there is no (off-shell) tensor calculus for 11D supergravity, the construction of Moss [[§
can, perhaps, be improved so that susy of the 11D Horava-Witten action on the manifold
with boundary does not require any boundary conditions on fields.

It is also instructive to find an alternative form of our bulk-plus-boundary action ({.13)
by separating the fermionic bilinear parts in wWy; 45 and K. Setting S = 0, we obtain [[J]

Ssq = /M dzes [%R(w) + %EMWMNKD(W)NW( + 0"

+ | due <K + l%w“bwb_> (4.16)
oM 2
where K is the standard bosonic extrinsic curvature term. In this form, ignoring the 4-fermi
terms, the 3D bulk-plus-boundary action for supergravity was first found by Luckock and
Moss in [B7].1® We have determined all 4-fermi terms in the bulk and boundary actions. We
found 4-fermi terms in the bulk action which agree with the literature of supergravity, but
no 4-fermi terms on the boundary. So, the 2-fermi terms of [B7 give already the complete
boundary action. The new result of our construction is that the same boundary action is
sufficient for “susy without BC” of the total bulk-plus-boundary action.

5. Summary and conclusions

In this article, we have studied the issue of constructing locally susy bulk-plus-boundary
actions in the simple setting of 3D N = 1 supergravity. We demonstrated that the tensor
calculus for 3D N = 1 supergravity can be naturally extended to take boundaries into
account. For a 3D scalar multiplet (A, x, F'), our “F + A” formula ([L.H) gives a bulk-plus-
boundary action

SF+A:/ d3$63|:F+...} —/ d>zes A (5.1)
M oM

16Tn 5D, the analog of this action was found in @] and its “susy without BC” was established up to the
4-fermi terms and terms involving the 5D graviphoton.
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which is “susy without BC” (its susy variation vanishes without the need to impose any BC
on fields) under the half of bulk susy parametrized by e (satisfying ’y‘a’q = €4 when the
Lorentz gauge (R.7) is imposed). Quite remarkably, this simple extension of the standard
F-density formula works in 4D N = 1 sugra as well (where the D-density can also be
similarly extended) [[[9].

The “F + A” (extended F-density) formula can be applied to a variety of models. As
an illustration, we applied it to the 3D N = 1 scalar curvature multiplet. The resulting
bulk-plus-boundary action (f.1J) has the standard 3D N = 1 sugra in the bulk and just
the term e2S on the boundary. It is “susy without BC” by construction, but the field
equation for the bulk auxiliary field S gives not only S = 0 in the bulk but also e = 0
on the boundary, which is unacceptable. To resolve this problem while maintaining the
“susy without BC” property, we looked for an additional separately susy boundary action
containing the same term e2S. The simplest such action is (B.3§). Adding it to the
minimal bulk-plus-boundary action given by the “F + A” formula, we find that the S-term
gets replaced by the York-Gibbons-Hawking extrinsic curvature term K together with the
gravitino bilinear v, +7“b1/)b_. Neither the bulk nor the boundary action is separately susy,
but their sum is and it is “susy without BC.”

In order to construct separately susy boundary actions systematically, we have devel-
oped a co-dimension one decomposition of bulk supermultiplets. We found that the 3D
N = 1 sugra multiplet (GMA,T/JM,S) decomposes into several 2D N = (1,0) multiplets:
the induced sugra multiplet (e,,%, ¥m+ ), the radion multiplet (633, —1h3— + e3%),—) and an
“off-diagonal multiplet” (es,, —633¢a_ +74%3+) [[J. (The other off-diagonal component of
the vielbein, em‘a’, vanishes in our Lorentz gauge (2.7).) With the parity assignments given
in (B.7), the first two multiplets are “even” and the last one is “odd.” The 3D N = 1 scalar
multiplet (A, x, F') allows a similar decomposition; see (B.33). Explicit verification that
these submultiplets transform as standard 2D N = (1,0) supermultiplets is tedious [[Z],
but our analysis of the gauge algebra guarantees that the co-dimension one decomposition
does work and does not require any (boundary) conditions on fields.

In the superspace formulation, one can act on superfields with superspace covariant
derivatives to construct new superfields. In the tensor calculus, the new multiplets can be
constructed simply by choosing an appropriate lowest component. For example, starting
with v%1,_, we obtain our extrinsic curvature (scalar) multiplet (B.3(]). Starting with 1,_,
we similarly obtain an extrinsic curvature tensor multiplet [1J]. The multiplets obtained
in this way can, together with any number of independent boundary matter multiplets,
be used to construct separately susy boundary actions using the standard 2D N = (1,0)
F-density formula (8.35). In conjunction with our “F + A” formula, this gives the most
general bulk-plus-boundary actions that are “susy without BC.” However, requiring that
the variational principle yields field equations that are not too strong restricts the choice
of boundary actions that one can allow [[].

We should note that the Lorentz gauge (R.7) that we used in this work allows a tremen-
dous simplification of the algebra. At the same time, our results can be extended to the
case when no Lorentz gauge is imposed (see e.g. footnote [[2) [[J. We also note that our
tensor calculus approach relies heavily on the off-shell supergravity formulation (with aux-
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iliary fields). Such a formulation is not always available in higher dimensions. Nonetheless,
a concrete higher dimensional model (such as the 11D Horava-Witten construction) has
still a chance to be “susy without BC” as we discussed in section [£3.

Our program of “susy without BC” can and should be extended to (a) dimensions
higher than three, (b) superspace formulation, (¢) superconformal symmetries and super-
conformal actions, (d) BRST symmetry. Some progress in these directions has already
been achieved [[J]. Ultimately, this would allow to have complete control over the models

discussed in the Introduction as well as other models where symmetries and boundaries
collide.
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